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Abstract. In an earlier paper aq-Schr̈odinger equation was obtained based on a particular
quantization procedure, called Borel quantization, and a relatedq-deformation of the Witt algebra.
This q-deformation is a deformation in the category of Lie algebras and hence the corresponding
q-Witt algebra has a trivial Hopf algebra structure. In this paper, we extend the above algebra
by the addition of a set of shift-type generators, which appear in the expression for the quantum
mechanical position operator and hence lead to a new type of quantum kinematics. The latter
gives rise to a new kind of evolution equation and it is shown that in the limitq → 1 a specific
class of Schr̈odinger equations is obtained from it. This specification of a particular class is a new
phenomenon, because in earlier references, where a differentq-deformation has been implemented
or no deformation has been used at all, such a class could not be determined uniquely. The extended
algebra used here has a nontrivial Hopf structure. The appearance of the shift-type generator in
theq-deformed picture hence leads to a selection of a particular type of dynamics and delivers in
the limit q → 1 new information for the characterization of the corresponding dynamics in the
undeformed situation.

1. Introduction

A discrete model for quantum mechanics over the configuration spaceS1 is proposed. It is a
generalization of the model in [2]. The motivation for studying this type of model is twofold.

It is a common procedure in classical mechanics to derive discrete models by replacing
differentials describing momentum by suitably chosen difference operators. The physical
motivation for this procedure is given by the fact that the measurement of momentum in classical
mechanics is related to two time-consecutive positional measurements, i.e. in mathematical
terms the momentum is given as a difference operator. As a consequence, a differential
describing momentum may be viewed as a mathematical idealization. Because of this, it
is plausible to look for a quantization of momentum in terms of difference operators and to
describe the momentum operator and the Schrödinger equation in terms of difference operators.
Since the introduction of difference operators is not unique, one needs a guiding principle.
Here, a quantization method, called Borel quantization, is used, which allows one to incorporate
difference operators via a deformation of the Witt algebra.

The motivation for this study, which is an extension of [2, 12], is its suitability to derive
in the continuous limit a Doebner–Goldin (DG) type of nonlinear Schrödinger equation with
an imaginary and a real part of the nonlinearity. These DG equations are classes of nonlinear
Schr̈odinger equations in which the imaginary part of the nonlinearity follows from the Borel
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quantization formalism (see e.g. [3,5,7,10]), and the real part is inferred by some plausibility
arguments related to the shape of the imaginary part of the nonlinearity [4]. Since the formalism
presented in this contribution allows one to derive both an imaginary and a real part for the
nonlinear additions to the Schrödinger equation, it can be used to justify the DG ansatz. In
fact, it turns out that the imaginary part of the nonlinearity coincides with the one in the DG
formalism and that the real part falls in one of the proposed classes. In this way, this study
may be understood as a justification for the DG models.

As a building block for the formulation of a discrete quantum mechanics onS1 q-
derivatives, i.e. multiplicativeq-difference operators of the form

Dqf (z) := f (qz)− f (q−1z)

(q − q−1)
(1)

are used. They can be viewed as a canonical choice for a multiplicative difference operator on
S1, because coordinates onS1 can be expressed asz = eiφ , whereφε[0, 2π) parametrize the
angle of the circleS1, so that one has withq ih qz = ei(φ+h). One obtains in the limitq → 1
the usual differential:

iDq → iz∂z = ∂φ. (2)

In order to introduce suchq-derivatives already in the quantization method, aq-deformation of
the algebraic structures underlying Borel quantization is used. In particular, aq-deformation
of the Witt algebra [9, 11] is implemented. It leads to a deformation of the momentum
operator in the quantum kinematics such that the latter is now given in terms ofq-difference
operators. The presentq-deformation differs from the previous one [2] by the appearance of
additional generators of shift type and we note that it has a nontrivial Hopf structure. The
new generators appear in the position operator and lead to the fact that the coordinates are no
longer commutative. We remark that the coproduct, as such, is not used in the formalism, but
the additional set of operators, which was needed to derive such a coproduct, appear as an
essential ingredient in the model and its physical interpretation.

For the derivation of a corresponding dynamics, aq-Schr̈odinger equation, an
appropriately definedq-version of the first Ehrenfest theorem is used. It uses a symmetrization
procedure, which can also be achieved by a symmetrization of the coordinates. This
symmetrization is needed to guarantee that the quantum mechanical probability density is
again a real quantity. The so obtainedq-deformed dynamics is aq-Schr̈odinger equation
which gives a DG equation in the limitq → 1 as stated above. In contrast to the deformation
used in a previous reference, the real part of the nonlinearity is specified unambiguously and
only real parts of DG type appear. In particular, a particular subclass of the DG family of real
parts is selected.

2. The quantization method

As stated in the introduction, the results of theq-Schr̈odinger equation are based on a particular
quantization method, called Borel quantization. It is designed for systems localized on a
continuous configuration manifoldM, especially forM with nontrivial topology as in the case
of S1. The kinematical part was introduced in [1, 6] and the dynamical part in [3, 5]. Since
a review of Borel quantization onS1 has already been given in [2], only the main results are
summarized briefly.
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2.1. The kinematics

Since classical position and momentum observables overS1 can be modelled respectively
via smooth real functionsf ε C∞(S1,R) and smooth vector fieldsXεVect(S1) on S1, the
infinite-dimensional Lie algebra

S(S1) := C∞(S1,R)⊂+ Vect(S1) (3)

encodes the kinematics of the system and is therefore calledkinematical algebra.
Quantization means to construct a (quantization-) map fromS(S1) into the set of self-

adjoint operators in the Hilbert spaceH = L2(S1, dφ) [8], i.e. to represent the position
observablesf (φ) and the momentum observablesX = X(φ) d

dφ , wheref (φ), X(φ) ∈
C∞(S1,R), via self-adjoint operators inH:

C∞(S1,R) 3 f 7→ Q(f )εSA(H)
Vect(S1) 3 X 7→ P(X)εSA(H).

(4)

With additional physically motivated assumptions, the set of such maps can be obtained
and also classified. The classification depends on the topology ofS1 and furthermore on a new
quantum numberD ε R, which is not related to the topology.

In the Fourier picture, wheref (φ) andX(φ) ε C∞(S1,R) are given in terms ofz :=
exp(iφ), one obtains

Q(f ) =
∞∑

n=−∞
fnTn

P (X) =
∞∑

n=−∞
Xn(Ln + iDnTn)

(5)

with
Tn = zn

Ln = zn
(
z

d

dz
+
n

2
+ θ

)
(6)

andfn = f̄−n,Xn = X̄−n.
The generatorsTn andLn fulfil the commutation relations of the inhomogeneous Witt

algebra{Tn}⊂+ {Ln}:
[Tm, Tn] = 0

[Ln, Tm] = mTm+n

[Lm,Ln] = (n−m)Lm+n.

(7)

Unitarily inequivalent quantizations are characterized by tuples(θ,D), whereθε[0, 1) is
related to a closed one-form and hence to the topology ofS1. Since it is sensible to work in
a particular quantization, it will be assumed thatD andθ arefixedconstants throughout this
paper.

2.2. The dynamics

The position operatorQ(f ) and the momentum operatorP(X) are the building blocks of
the dynamics. The connection between the kinematical situation and the dynamics is given
via a generalized version of the first Ehrenfest relation. It is [5] an equation between matrix
elements (Schrödinger representation) and the quantized operatorsQ(f ) andP(X). For pure
statesψεH = L2(S1, dφ) one has
d

dt
〈ψ(φ, t),Q(f )ψ(φ, t)〉 = 〈ψ(φ, t), P (Xgradf )ψ(φ, t)〉 ∀f ε C∞(S1,R) (8)
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whereXgradf = f ′(φ) d
dφ .

It leads to a Fokker–Planck-type equation for the time derivative of the probability density
for positionsρ(φ, t) = ψ̄(φ, t)ψ(φ, t) [3]

ρ̇ = i

2
(ψ̄ψ ′′ − ψ̄ ′′ψ) +Dρ ′′ − θρ ′ (9)

and thus restricts the evolution equation for pure statesψ .
This can be seen with the ansatz

i∂tψ = Hψ +G[ψ̄, ψ ]ψ
−i∂t ψ̄ = H̄ ψ̄ + Ḡ[ψ̄, ψ ]ψ̄

(10)

whereH is a linear operator, later interpreted as Hamiltonian, andG[ψ̄, ψ ] ≡ ReG[ψ̄, ψ ] +
iIm G[ψ̄, ψ ] a nonlinear function of̄ψ ,ψ (possibly also ont andφ), because it allows one to
express ˙ρ as

ρ̇ = ˙̄ψψ + ψ̄ψ̇ = i(ψ(H̄ ψ̄)− ψ̄(Hψ)) + 2ImG[ψ̄, ψ ]ρ. (11)

Together with (9) it leads to an expression for the Schrödinger equation (m = 1, h̄ = 1):

i∂tψ = −1

2

d2

dφ2
ψ − iθ

d

dφ
ψ + i

D

2ρ

(
d2

dφ2
ρ

)
ψ + ReG[ψ̄, ψ ]︸ ︷︷ ︸

R[ψ ]

ψ (12)

in which the real partR[ψ ] of the nonlinear termG[ψ̄, ψ ] remains undetermined as a
consequence of the fact that the real part of the nonlinearity does not appear in (11).

In order to also specify the real part of the nonlinearity, further assumptions are necessary.
Motivated by the shape of the imaginary part ofG[ψ̄, ψ ], one demands a number of plausible
requirements [3]:

(i) R[ψ ] should be proportional toD, i.e. vanishing forD = 0.

(ii) R[ψ ] should have derivatives no higher than of second order and occurring only in the
numerator.

(iii) R[ψ ] should be complex homogeneous of degree zero, i.e.R[αψ ] = R[ψ ] for all α ε C.

These yield a family of possible real parts, the DG-classes of real parts:

R[ψ ] := D1
j ′0
ρ

+D2
ρ ′′

ρ
+D3

j2
0

ρ2
+D4

(j0ρ
′)

ρ2
+D5

(ρ ′)2

ρ2
. (13)

It is stressed already here that theq-Schr̈odinger equation derived in this contribution will
allow for a specification of a fixed real part of the nonlinearity in the limitq → 1, which lies
in this DG-class of real parts.

3. q-deformation of the kinematics

In this section we review theq-deformation of the Witt algebra used earlier and show how it
can be augmented, by the addition of further generators, to a nontrivial Hopf algebra [9, 11].
The corresponding generators are then implemented to obtain aq-deformed version of the
quantum Borel kinematics onS1.
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3.1. Theq-Witt algebra as a Hopf algebra

Previously, aq-deformation of the Witt algebra of the following form has been used:

[L(j1,θ)
m ,L(j2,θ)

n ] = [j1
n
2 − j2

m
2 ][j1 + j2]

[j1][j2]
L(j1+j2,θ)
m+n +

[j1
n
2 + j2

m
2 ][j2 − j1]

[j1][j2]
L(j2−j1,θ)
m+n . (14)

Forq → 1, the commutation relations reproduce the commutation relations of the Witt algebra.
The extra parameterj , which has been introduced during the deformation, vanishes in the limit
q → 1. Theq-Witt algebra (14) is realized by

L(j,θ)m := zm [j (Nz + m
2 + θ)]

[j ]
. (15)

Here,Nz is an abbreviation forz∂z.
Theq-Witt algebra is again a Lie algebra. However, it is possible, via the introduction of

a set of additional operators, to find a larger algebra with nontrivial Hopf structure containing
theq-Witt algebra above [9,11].

In particular, in [11] a set of shift operatorsKs of the form

Ks := qsNz (16)

is introduced, which is commutative, i.e.

[Ks,Kr ] = 0 ∀r, s (17)

and couples to the generators of theq-Witt algebra (14) as follows:

KsL(j,θ)m = qsmL(j,θ)m Ks ∀s,m, j. (18)

The augmented algebra (14), (17) and (18) is now a nontrivial Hopf algebra with the following
coproduct1, counit∈ and antipodeγ [11]:

1(L(j,θ)m ) = L(j,θ)m ⊗Km +Km ⊗ L(j,θ)m 1(Kl) = Kl ⊗Kl
ε(L(j,θ)m ) = 0 ε(Kl) = 1
γ (L(j,θ)m ) = −K−1

m L(j,θ)m K−1
m γ (Kl) = K−1

l .

(19)

3.2. q-deformation of position and momentum operators onS1

Based on theq-Witt algebra (14) aq-deformation of the quantum Borel kinematics onS1 had
been introduced as†:

Qq(f ) =
∞∑

n=−∞
fnTn(= Q(f ))

P jq (X) =
∞∑

n=−∞
Xn

(
L(j,θ)n + i

[jn]

[j ]
DTn

)
.

(20)

In these expressions, only the momentum operator is deformed, whereas the position operator
remains unaffected by the deformation procedure. In particular, via deformation, the
momentum operator becomes dependent on an additional parameterj , whereas the position
operator, remaining undeformed, is not equipped with such an additional freedom.

This causes an imbalance in the treatment of position and momentum operator. In this
contribution this problem is cured with the help of the additional generatorsKs , which were
introduced in the previous section. These generators are also used to deform the position

† Note that instead of [n] in [2] the expression[jn]
[j ] is used as in [12].
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operators in (20) and the indexs will then be the counterpart to the indexj for the momentum
operator.

SinceKs is a shift operator, one hasKs → 1 for q → 1, so that a multiplication withKs
does not affect the corresponding identities in this limit. The following expression, denoted
as Hopf algebra quantum Borel kinematics, is hence a possible way to introduce the operators
Ks into theq-quantum Borel kinematics (20):

Qs
q(f ) =

∞∑
n=−∞

fnTnKs

P jq (X) =
∞∑

n=−∞
Xn

(
L(j,θ)n + i

[jn]

[j ]
DTn

)
.

(21)

It differs from (20) by the factorKs in the position operator. As a consequence, the discrete
basis of the coordinate partBn,s := TnKs ceases to be Abelian, and one obtains the following
for the coordinate part instead of the first equation in formula (7):

[Bm,s, Bn,j ] = (qsn − qjm)Bn+m,s+j . (22)

This means that we have a non-commutative discrete geometry which appears as a consequence
of Borel quantization and the new set of generatorsKs in the deformation of the Witt algebra.
The coupling of the new coordinatesBn,s to the generatorsL(j,θ)n is given by the relation

q−snBm,sL(j,(θ+m))
n = L(j,θ)n Bm,s (23)

which generalizes the relation in [2] for the commutative coordinatesTn (TmL(j,(θ+m))
n =

L(j,θ)n Tm). The part which only involves the generatorsL(j,θ)n is given by (14) as before.
It is possible to introduce a symmetrization on the coordinates of the form

Sm,s := 1
2(TmKs +KsTm) (24)

which like the productTmKs lead to the generatorsTm in the limit q → 1. In the next
section it turns out that such a symmetrized form of the coordinates can be used instead of a
symmetrization of the Ehrenfest relation as indicated in (28).

Finally, we remark that for the particular choice of the deformation parameterq as a root
of unity, one can restrict the configuration manifoldS1 to itsN -point discretization

S1
N :=

{
zl = exp

(
2π i

N
l

) ∣∣∣∣l = 0, . . . , N − 1

}
. (25)

In this case the action of i[Nz] on the wavefunctionsψ (now spanning a finite-dimensional
Hilbert spaceHN of sequences) of the form

ψ(l) =
N−1∑
n=0

ψnlz
n
l (26)

is given by i[Nz]ψ(l) = i
q−q−1

∑
n ψn,l((qzl)

n − (q−1zl)
n) and is hence well defined onS1

N ,

becauseqzl and q−1zl are again lattice points. Correspondingly, only a finite number of
generators for the generalized coordinates arise, so that only finite sums appear in (21).

In this discrete setting, the parameterj in L(j,θ)n and s in Ks have the following
interpretation:L(j,θ)n contains—dependent onj—differences between different points ofS1

N ,
e.g. between next nearest neighbours forj = 2 or even further points, i.e. it measures how
coarse grained the discretization is. Similarly,s is a measure for how coarse grained the jumps
initiated by the shift-operatorsKs are.
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4. q-deformation of the dynamics

It is apparent from the construction in the undeformed case that an appropriately generalized
version of the first Ehrenfest relation is the main building block for the derivation of a dynamics.
In order to adapt (8) to the situation of the Hopf algebra quantum Borel kinematics, we need a
symmetrization procedure on the expectation values in the first Ehrenfest relation. In particular,
if 〈 , 〉 denotes the usual scalar product as in [2] andS denotes a shift operator, we need to use
expressions of the form

〈ψ, Sφ〉sym := 1
2{〈ψ, Sφ〉 + 〈S̄ψ, φ〉}. (27)

It means taking the usual scalar product in a first step and then symmetrizing the dependence
on the shift operatorS. This procedure is necessary because of the occurrence of the operators
Ks in the position operators in (21) in order to guarantee that the deformed counterpart to
the quantum mechanical probability densityρ = ψ̄ψ is a real quantity. Equivalently, the
symmetrized coordinates (24) can be used instead of the coordinates in (21) to obtain the same
effect.

In the symmetrized version, the first Ehrenfest relation reads:

∂t 〈ψ(t, z),Qs
q(f )ψ(t, z)〉sym = 〈ψ(t, z), P jq (Xgradqf )ψ(t, z)〉sym (28)

where

P jq (Xgradqf ) =
∑
n

i
[nj ]

[j ]
fn

(
L(j,θ)n + i

[nj ]

[j ]
DTn

)
(29)

as in [12]. It is such that it reproduces (8) in the limitq → 1.
We start by calculating the left- and right-hand side of (28) separately. The left-hand side

yields:

∂t 〈ψ(t, z),Qs
q(f )ψ(t, z)〉sym = ∂t 〈ψ(t, z), f (z)Ksψ(t, z)〉sym

= ∂t 1
2{〈ψ, f (Ksφ)〉 + 〈(Ksψ), f φ〉}

= 〈f, ∂t 1
2(ψ̄(Ksψ) + (Ksψ̄)ψ)〉

=: 〈f,A〉 (30)

where the real-valued functionsf do not depend ont (compare with the undeformed case in
section 2.2) and are hence unaffected by the operator∂t . The last line in (30) contains the
usual scalar product. Theq-analogue of the quantum mechanical probability densityρ = ψ̄ψ
is hence given as12(ψ̄(Ksψ) + (Ksψ̄)ψ). Since the shift-operatorsKs are real, it is a real
quantity.

Correspondingly, the right-hand side of (28) leads to an expression of the form〈f,B〉 in
the usual scalar product with†

B := i

2[j ]2

{(
[jNz]

[
j
Nz

2

]
ψ̄

)
(q−ε1jNz+ε2j

Nz
2 ψ)−

(
[jNz]

[
j
Nz

2

]
ψ

)
(qε1jNz+ε2j

Nz
2 ψ̄)

−([jNz]qε2j
Nz
2 ψ̄)

([
j
Nz

2

]
q−ε1jNzψ

)
+ ([jNz]q

ε2j
Nz
2 ψ)

([
j
Nz

2

]
qε1jNz ψ̄

)
+

(
[jNz]

[
j
Nz

2

]
qε2j

Nz
2 ψ̄

)
(q−ε1jNzψ)−

(
[jNz]

[
j
Nz

2

]
qε2j

Nz
2 ψ

)
(qε1jNz ψ̄)

† The change of [Nz] into [jNz ]
[j ] andε into jε with respect to the expression in [2] are rooted in the corresponding

changes in (20). It is the convention used in [12].
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− ([jNz]ψ̄)
([
j
Nz

2

]
q−ε1jNz+ε2j

Nz
2 ψ

)
+([jNz]ψ)

([
j
Nz

2

]
qε1jNz+ε2j

Nz
2 ψ̄

)}
− i

[j ]2
D([jNz]

2ψ̄ψ) (31)

whereqaNz acts as a shift-operator on functionsf (z), i.e.

qaNzf (z) = f (qaz). (32)

We restrict ourselves to the case ofθ = 0 to keep the argument clear. Furthermore, the
θ -dependence is not essential for the derivation of the nonlinear parts, so that it is not crucial
for the main result, which is the derivation of possible real parts.

In terms ofψ1 andψ2, whereψ = ψ1 + iψ2, one finds for theD-independent part:

B = 1

2[j ]2

{(
−[jNz]

[
j
Nz

2

]
ψ1

)
((qε1jNz + q−ε1jNz )qε2j

Nz
2 ψ2)

+

(
[jNz]

[
j
Nz

2

]
ψ2

)
((qε1jNz + q−ε1jNz )qε2j

Nz
2 ψ1)

+(−[jNz]q
ε2

j

2Nzψ2)

([
j
Nz

2

]
(qε1jNz + q−ε1jNz )ψ1

)
+([jNz]q

ε2
j

2Nzψ1)

([
j
Nz

2

]
(qε1jNz + q−ε1jNz )ψ2

)
(
−[jNz]

[
j
Nz

2

]
qε2j

Nz
2 ψ1

)
((qε1jNz + q−ε1jNz )ψ2)

+

(
[jNz]

[
j
Nz

2

]
qε2j

Nz
2 ψ2

)
((qε1jNz + q−ε1jNz )ψ1)

+(−[jNz]ψ2)

([
j
Nz

2

]
(qε1jNz + q−ε1jNz )qε2

j

2Nzψ1

)
+ ([jNz]ψ1)

([
j
Nz

2

]
(qε1jNz + q−ε1jNz )qε2

j

2Nzψ2

)}
. (33)

Fulfilling the generalized Ehrenfest relation (28) means equating the expressions forA

andB. This restricts possible evolution equations forψ and like this contains information on
i∂tψ . To extract this information, a general ansatz for such an evolution equation has to be
made. We use an ansatz withHj

q linear inψ andGj
q [ψ̄, ψ ] nonlinear inψ , ψ̄ :

i∂tψψ̄ = (Hj
q ψ)(Sψ̄) + (Gj

q [ψ̄, ψ ]ψ)(Rψ̄)
−i∂t ψ̄ψ = (H̄ j

q ψ̄)(S̄ψ) + (Ḡj
q [ψ̄, ψ ]ψ̄)(R̄ψ).

(34)

S andR are shift operators like in (32), which typically occur in aq-deformed theory. Equations
(34) reduces to (10) in the limitq → 1, if Hj

q andGj
q [ψ̄, ψ ] are such that they giveH and

G[ψ̄, ψ ] in this limit.
With (34) we get

A = 1
2((∂tKsψ̄)(ψ) + (∂tψ)(Ksψ̄) + (∂t ψ̄)(Ksψ) + (∂tKsψ)(ψ̄))

= i{(H̄ j
q Ksψ̄)(S̄ψ) + (Ḡj

qKsψ̄)(Rψ)− (Hj
q Ksψ)(Sψ̄)− (Gj

qKsψ)(Rψ̄)

+(H̄ j
q ψ̄)(S̄Ksψ) + (Ḡj

qψ̄)(RKsψ)− (Hj
q ψ)(SKsψ̄)− (Gj

qψ)(RKsψ̄)}.
(35)
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Now assuming that the linear operatorHj
q , is denoted byH , and the corresponding shift

S are real and expressing the identity again viaψ = ψ1 + iψ2 in terms ofψ1 andψ2, we obtain
that the terms on the right-hand side of (35) involving the linear termsH are given by:

(Hψ2)(SKsψ1) + (HKsψ2)(Sψ1)− (Hψ1)(SKsψ2)− (HKsψ1)(Sψ2). (36)

Equating this expression with the linear terms in (33), we find

H = 1

[j ]2
[jNz]

[
j
Nz

2

]
S = 1

2(q
ε1Nz + q−ε1Nz) Ks = qε2j

Nz
2 . (37)

In particular, sinceKs = qsNz , the parameters is fixed in dependence onj . The formalism to
derive aq-Schr̈odinger equation corresponding to the ansatz (34) hence requires the selection
s = ε2j

2 . Reinserting this into the Hopf algebra quantum Borel kinematics means that the
freedom in the position and momentum operator is not independent and linked precisely by
this condition ons via the dynamics.

The resulting linear part of theq-Schr̈odinger equation hence is (j ε 2N, ε1, ε2 = ±1):

(Hj
q ψ)(Sψ̄) =

(
[jNz]

[
j
Nz

2

]
[j ]−2ψ

)
1

2
(qε1Nz + q−ε1Nz)ψ̄. (38)

It leads for allj in the limit q → 1 to the Hamiltonian− 1
2

d2

dφ2 obtained in section 2.2.
Furthermore, it resembles the Hamiltonian obtained with the more restricted deformation up
to a factorqε2j

Nz
2 , which now is compensated by the operatorKs .

Up to now, the nonlinear terms,Gj
q , have been neglected. In order to derive them, the

terms in (35), which contain a dependence onGj
q [ψ̄, ψ ] := G1 + iG2, are collected. The

imaginary terms cancel as expected and one obtains with the notationR = R1 + iR2, ψ the
following real quantity:

G1h1(ψ1, ψ2, R1, R2,Ks) +G2h2(ψ1, ψ2, R1, R2,Ks) (39)

where

h1(ψ1, ψ2, R1, R2,Ks) = (Ksψ1)(R2ψ1) + (Ksψ2)(R2ψ2)

+(Ksψ2)(R1ψ1)− (Ksψ1)(R1ψ2) + (ψ1)(R2Ksψ1) + (ψ2)(R2Ksψ2)

+(ψ2)(R1Ksψ1)− (ψ1)(R1Ksψ2) (40)

and

h2(ψ1, ψ2, R1, R2,Ks) = (Ksψ1)(R1ψ1) + (Ksψ2)(R1ψ2)

+(Ksψ1)(R2ψ2)− (Ksψ2)(R2ψ1) + (ψ1)(R1Ksψ1) + (ψ2)(R1Ksψ2)

+(ψ1)(R2Ksψ2)− (ψ2)(R2Ksψ1). (41)

It now has to be equated with the nonlinear terms in (33). The corresponding identity
implicitly containsG1,G2,R1 andR2. Depending on the shiftsR1 andR2,G1 andG2 can be
obtained from it and yield the nonlinear terms via

FNL ≡ (Gj
q [ψ̄, ψ ]ψ)(Rψ̄) = ((G1 + iG2)ψ)(R1 + iR2)ψ̄. (42)

In particular, the nonlinearq-Schr̈odinger equation is then given as (j ε 2N, ε1, ε2 = ±1):

i(∂tψ)ψ̄ = (Hj
q ψ)(Sψ̄) + FNL (43)

with Hj
q andS as in (38).
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It is important to stress that the nonlinear termFNL depends on the choices ofR1 andR2,
and indeed, for different choices ofR1 andR2 different types of nonlinear terms are obtained.

The limitq → 1 of the linear part of the evolution equation (38) has already been discussed
above. In order to obtain the nonlinear part in the limitq → 1, it is necessary to expand the
functionsh1(ψ1, ψ2, R1, R2,Ks) andh2(ψ1, ψ2, R1, R2,Ks) as well as the nonlinear terms in
(33) in leading orders ofh, whereh is given asq = eh. For the nonlinear terms in (33) one
findsA(1) +A(2) with

A(1) = j2

8i
(ψ̄ ′ψ ′′′ − ψ ′ψ̄ ′′′)h2 + O(h3)

A(2) = −Dρ ′′ + O(h).
(44)

For h1(ψ1, ψ2, R1, R2,Ks) one derives with the notationR = R1 + iR2 = (aqαNz +
bqβNz) + i(cqγNz + dqδNz) (a, b, c, d, α, β, γ andδ are real constants) the expression

h1(ψ1, ψ2, R1, R2,Ks) = 2(c + d)(ψ2
1 +ψ2

2) + 2h

(
(c + d)ε2

j

2
+ cγ + dδ

)
×(ψ1ψ

′
1 +ψ2ψ

′
2) + (aα + bβ)(ψ2ψ

′
1− ψ1ψ

′
2) + O(h2) (45)

and a similar expression forh2(ψ1, ψ2, R1, R2,Ks) which follows from (45) using
h2(ψ1, ψ2, R1, R2,Ks) = h1(ψ1, ψ2, R2, R1,Ks).

An implementation of these expansions shows that in the limitq → 1, one always obtains
the same imaginary part for the nonlinear functional, which has also been derived without
q-deformation. In addition, a particular class of real parts occurs:

Dρ ′′

2ρ
. (46)

It is equal to the imaginary part obtained in the limitq → 1 or without deformation in the
framework of Borel quantization. ForR = 1 (trivial shift operator) the real part remains
undetermined like before, as expected for consistency.

It is interesting to remark that the deformation in the earlier reference has led to different
classes of real parts. The reason for this discrepancy lies in the fact that here one has obtained
nonlinear terms in leading orders ofh2 in (44), whereas the counterpart to this formula in [12]
(formula (7.48)) is given in leading orders ofh, which have cancelled each other here due to
the contributions from the symmetrization.

In this way, the formalism presented here contains more information and leads to more
specific results. It is interesting to note that the real part derived here lies in the DG-class of
real parts introduced in section 2. In contrast to this, there are two nontrivial classes of real
parts for the more restricted deformation, one of which coincides with the class derived here,
and another one, which does not fall into the DG-classes. The deformation procedure used
here hence has picked from these possibilities precisely this class, which is a member of the
DG-classes.

Finally, the set ofq-Schr̈odinger equations (43) is indicated directly as a difference
equation in dependence ofj :

(i∂tψ(l))ψ̄(l) = 1

2(qj − q−j )2(
ψ

(
l +

3j

2

)
− ψ

(
l − j

2

)
− ψ

(
l +

j

2

)
+ψ

(
l − 3j

2

))
(ψ̄(l + j) + ψ̄(l − j)) + FNL.

(47)

It displays a more symmetric structure than the previous result.
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5. Summary

A method introduced in an earlier paper for the derivation of a discrete quantum mechanics
onS1 has been extended in such a way, that the quantum kinematics is now given in terms of
generators of an augmented algebra. This change in the kinematical structure has led, together
with an appropriate generalization of the first Ehrenfest theorem, to a newq-Schr̈odinger
equation. In particular, in the limesq → 1, a specific type of real part for the nonlinearity in
the Schr̈odinger equation could be derived for the first time, whereas no information is obtained
in the framework of Borel quantization withoutq-deformation, or only restricted information
with the previous deformation. In particular, a unique class of real parts has been specified, and
it is interesting that a member of the DG-class of real parts has been selected. The formalism
presented here has hence led to a particular type of nonlinear dynamics on the quantum level.
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