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Abstract. In an earlier paper g-Schibdinger equation was obtained based on a particular
quantization procedure, called Borel quantization, and a relgtiegformation of the Witt algebra.

This g-deformation is a deformation in the category of Lie algebras and hence the corresponding
g-Witt algebra has a trivial Hopf algebra structure. In this paper, we extend the above algebra
by the addition of a set of shift-type generators, which appear in the expression for the quantum
mechanical position operator and hence lead to a new type of quantum kinematics. The latter
gives rise to a new kind of evolution equation and it is shown that in the §mit 1 a specific

class of Schidinger equations is obtained from it. This specification of a particular class is a new
phenomenon, because in earlier references, where a differdeformation has been implemented

or no deformation has been used at all, such a class could not be determined uniquely. The extended
algebra used here has a nontrivial Hopf structure. The appearance of the shift-type generator in
the g-deformed picture hence leads to a selection of a particular type of dynamics and delivers in
the limit ¢ — 1 new information for the characterization of the corresponding dynamics in the
undeformed situation.

1. Introduction

A discrete model for quantum mechanics over the configuration splaiseproposed. It is a
generalization of the model in [2]. The motivation for studying this type of model is twofold.

It is a common procedure in classical mechanics to derive discrete models by replacing
differentials describing momentum by suitably chosen difference operators. The physical
motivation for this procedure is given by the fact that the measurement of momentumin classical
mechanics is related to two time-consecutive positional measurements, i.e. in mathematical
terms the momentum is given as a difference operator. As a consequence, a differential
describing momentum may be viewed as a mathematical idealization. Because of this, it
is plausible to look for a quantization of momentum in terms of difference operators and to
describe the momentum operator and the 8dimger equation in terms of difference operators.
Since the introduction of difference operators is not unique, one needs a guiding principle.
Here, a quantization method, called Borel quantization, is used, which allows one to incorporate
difference operators via a deformation of the Witt algebra.

The motivation for this study, which is an extension of [2, 12], is its suitability to derive
in the continuous limit a Doebner—-Goldin (DG) type of nonlinear 8dhrger equation with
an imaginary and a real part of the nonlinearity. These DG equations are classes of nonlinear
Schiddinger equations in which the imaginary part of the nonlinearity follows from the Borel
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quantization formalism (see e.qg. [3,5,7,10]), and the real part is inferred by some plausibility
arguments related to the shape of the imaginary part of the nonlinearity [4]. Since the formalism
presented in this contribution allows one to derive both an imaginary and a real part for the
nonlinear additions to the Sdbdinger equation, it can be used to justify the DG ansatz. In
fact, it turns out that the imaginary part of the nonlinearity coincides with the one in the DG
formalism and that the real part falls in one of the proposed classes. In this way, this study
may be understood as a justification for the DG models.

As a building block for the formulation of a discrete quantum mechanicss’og-
derivatives, i.e. multiplicativg-difference operators of the form

f(qz) — f(g 2
D,f(z) i= ——MM—— (1)
! (@—g™
are used. They can be viewed as a canonical choice for a multiplicative difference operator on
S, because coordinates 6# can be expressed as= €?, wherege[0, 27r) parametrize the
angle of the circles?, so that one has with" gz = €@*". One obtains in the limiy — 1
the usual differential:

iD, — izd, = 3. )

In order to introduce sucfrderivatives already in the quantization methog;@eformation of

the algebraic structures underlying Borel quantization is used. In particuladeformation

of the Witt algebra [9, 11] is implemented. It leads to a deformation of the momentum
operator in the quantum kinematics such that the latter is now given in tergasliffErence
operators. The preseptdeformation differs from the previous one [2] by the appearance of
additional generators of shift type and we note that it has a nontrivial Hopf structure. The
new generators appear in the position operator and lead to the fact that the coordinates are no
longer commutative. We remark that the coproduct, as such, is not used in the formalism, but
the additional set of operators, which was needed to derive such a coproduct, appear as an
essential ingredient in the model and its physical interpretation.

For the derivation of a corresponding dynamics, geéSchiBdinger equation, an
appropriately defineg-version of the first Ehrenfest theorem is used. It uses a symmetrization
procedure, which can also be achieved by a symmetrization of the coordinates. This
symmetrization is needed to guarantee that the quantum mechanical probability density is
again a real quantity. The so obtaingeleformed dynamics is a-Schibdinger equation
which gives a DG equation in the limjt— 1 as stated above. In contrast to the deformation
used in a previous reference, the real part of the nonlinearity is specified unambiguously and
only real parts of DG type appear. In particular, a particular subclass of the DG family of real
parts is selected.

2. The quantization method

As stated in the introduction, the results of th&chbdinger equation are based on a particular
quantization method, called Borel quantization. It is designed for systems localized on a
continuous configuration manifol, especially forM with nontrivial topology as in the case

of S1. The kinematical part was introduced in [1, 6] and the dynamical part in [3,5]. Since
a review of Borel quantization ofi' has already been given in [2], only the main results are
summarized briefly.
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2.1. The kinematics

Since classical position and momentum observables §¥aan be modelled respectively
via smooth real functiong € C*°(S*, R) and smooth vector field¥eVect(S?) on S?, the
infinite-dimensional Lie algebra

S($Y := C>(Sh R) & Vect(Sh 3)
encodes the kinematics of the system and is therefore dallechatical algebra

Quantization means to construct a (quantization-) map gst) into the set of self-
adjoint operators in the Hilbert spad¢ = L3(S?, d¢) [8], i.e. to represent the position
observablesf (¢) and the momentum observablés = X(¢)%, where f(¢), X(¢) €
C>(S%, R), via self-adjoint operators iH:

C(SLR) > f > Q()eSAH) @
Vect(SY) 3 X > P(X)eSA(H).

With additional physically motivated assumptions, the set of such maps can be obtained
and also classified. The classification depends on the topolagjyasfd furthermore on a new
quantum numbeb ¢ R, which is not related to the topology.

In the Fourier picture, wherg (¢) and X (¢) e C*(S*, R) are given in terms of :=
exp(ig), one obtains

[e¢]

o)=Y full
" (5)
P(X) = Z X, (L, +iDnT,)
with )
T, =7"
o d n (6)
L,=z <Zd_Z+§+9>

andf, = f,, X, = X_,.
The generatorg,, and L, fulfil the commutation relations of the inhomogeneous Witt
algebra{T,} & {L,}:
[T,.,T,] =0
[Ln, Tn] = mTyen (7)
[Lma Ln] = (n —m)Lyp.
Unitarily inequivalent quantizations are characterized by tugle®), wheref¢[0, 1) is

related to a closed one-form and hence to the topolog§tofSince it is sensible to work in
a particular quantization, it will be assumed tliatando arefixed constants throughout this

paper.

2.2. The dynamics

The position operatoP(f) and the momentum operat@(X) are the building blocks of

the dynamics. The connection between the kinematical situation and the dynamics is given
via a generalized version of the first Ehrenfest relation. It is [5] an equation between matrix
elements (Sclidinger representation) and the quantized opera@gy® and P (X). For pure
statesyeH = L?(S*, d¢) one has

d
5 W ©@.0. QN (4. 0) = (W (@.1). P(Xgraar) ¥ (. 1)) VfeC (' R) 8
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whereXgragr = f/(¢>)%.
Itleads to a Fokker—Planck-type equation for the time derivative of the probability density

for positionsp (¢, 1) = (¢, ¥ (¢, 1) [3]
p= 5y = 0"v)+ Dp — b5 ©)

and thus restricts the evolution equation for pure states
This can be seen with the ansatz

ia,I/f_z HI/_’:"G[}/_H_I/[]W_ (10)
—i0,y = HY + Gy, ¥ ]y
whereH is a linear operator, later interpreted as Hamiltonian,@pgdl, v] = ReG[v, ¥] +
ilm G[v, ¥] a nonlinear function off, ¥ (possibly also om and¢), because it allows one to
express as

p =0y + 00 =i D) — §(HY)) +2m Gy, ¥]p. (11)
Together with (9) it leads to an expression for the $dimger equationvg = 1,2 = 1):

: 1 d? _d D [ .

00 = 5 gas ~ 10450+ (40 ) ¥ +ReGU Y (12)

R[y]

in which the real partR[y] of the nonlinear termG[v, ] remains undetermined as a
consequence of the fact that the real part of the nonlinearity does not appear in (11).

In order to also specify the real part of the nonlinearity, further assumptions are necessary.
Motivated by the shape of the imaginary partf), v], one demands a number of plausible
requirements [3]:

(i) R[v]should be proportional t®, i.e. vanishing forD = 0.

(i) R[v] should have derivatives no higher than of second order and occurring only in the
numerator.

(i) R[v] should be complex homogeneous of degree zeroR[ey] = R[] for all « ¢ C.
These yield a family of possible real parts, the DG-classes of real parts:
Jo p’ (Jor') (p")?

2
—+D2—+Daj—02+D4 + Ds———.
o P p o p

R[Y]:= Dy 13)

It is stressed already here that theSchibdinger equation derived in this contribution will
allow for a specification of a fixed real part of the nonlinearity in the lignit> 1, which lies
in this DG-class of real parts.

3. g-deformation of the kinematics

In this section we review thg-deformation of the Witt algebra used earlier and show how it
can be augmented, by the addition of further generators, to a nontrivial Hopf algebra [9, 11].
The corresponding generators are then implemented to obigidedormed version of the
quantum Borel kinematics oft.
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3.1. Theg-Witt algebra as a Hopf algebra

Previously, aj-deformation of the Witt algebra of the following form has been used:

[15 — 2511+ 2 LU0 | [j15 + j251lj2 — ja
[allJ2] [l

Forqg — 1,the commutation relations reproduce the commutation relations of the Witt algebra.
The extra parametgt, which has been introduced during the deformation, vanishes in the limit
g — 1. Theg-Witt algebra (14) is realized by

o [J(N:+75 +9)].
[/]
Here,N, is an abbreviation fozd,.
Theg-Witt algebra is again a Lie algebra. However, it is possible, via the introduction of
a set of additional operators, to find a larger algebra with nontrivial Hopf structure containing

the g-Witt algebra above [9, 11].
In particular, in [11] a set of shift operatokg of the form

[Efr{l»e)’ E’(ljzﬁ)] — Eir{i;jl’g)- (14)

LY = (15)

K, = q*"" (16)
is introduced, which is commutative, i.e.
[K;, K, ]=0 Vr, s an

and couples to the generators of th&Vitt algebra (14) as follows:
KLU0 = g LU0 K Vs, m, j. (18)

The augmented algebra (14), (17) and (18) is now a nontrivial Hopf algebra with the following
coproductA, counite and antipoder [11]:

ALT) = L7 @ K+ K @ L7 AKK) =K @ K

(LY =0 e(K)=1 (19)

y( LYy = —k eUO g1 y(K) =Kt

3.2. g-deformation of position and momentum operatorssén

Based on thg-Witt algebra (14) a-deformation of the quantum Borel kinematics $hhad
been introduced ast:

Qu(f) =Y fHTu(=0(f)
" . (20)
P/(X)= ) X, (qfﬂ + i%DTn) :

In these expressions, only the momentum operator is deformed, whereas the position operator
remains unaffected by the deformation procedure. In particular, via deformation, the
momentum operator becomes dependent on an additional pargmeteereas the position
operator, remaining undeformed, is not equipped with such an additional freedom.

This causes an imbalance in the treatment of position and momentum operator. In this
contribution this problem is cured with the help of the additional generagrsvhich were
introduced in the previous section. These generators are also used to deform the position

T Note that instead ofs] in [2] the expressior{% is used as in [12].
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operators in (20) and the indexvill then be the counterpart to the indgxor the momentum
operator.

SinceK is a shift operator, one hd§, — 1 forg — 1, so that a multiplication witlK
does not affect the corresponding identities in this limit. The following expression, denoted
as Hopf algebra quantum Borel kinematics, is hence a possible way to introduce the operators
K into theg-quantum Borel kinematics (20):

o0
Q5N =Y hHTK,
" Ljn] (21)
P =Y X, (c,gjﬂ) + iiDTn> .
Wb [/]
It differs from (20) by the factoK in the position operator. As a consequence, the discrete
basis of the coordinate paB}, ; := T, K; ceases to be Abelian, and one obtains the following
for the coordinate part instead of the first equation in formula (7):

[Bm,sa Bn,j] = (qm - qjm)Bn+m.s+j~ (22)

This means that we have a non-commutative discrete geometry which appears as a consequence
of Borel quantization and the new set of generafoyrsn the deformation of the Witt algebra.
The coupling of the new coordinatés , to the generators"” is given by the relation

qim Bm,s'ﬁ,(lj’(0+m)) = ‘C,(lj’g) Bm,s (23)

which generalizes the relation in [2] for the commutative coordinaI,eSTmEE,j’(“"’)) =
£79T,,). The part which only involves the generataré” is given by (14) as before.
Itis possible to introduce a symmetrization on the coordinates of the form

Sm,s = %(TmKs + KS Tm) (24)

which like the productl,, K, lead to the generatorg, in the limitg — 1. In the next
section it turns out that such a symmetrized form of the coordinates can be used instead of a
symmetrization of the Ehrenfest relation as indicated in (28).

Finally, we remark that for the particular choice of the deformation paramedsra root
of unity, one can restrict the configuration manifsttito its N-point discretization

S = {z,:exp<%l> ‘l:O,...,N—l}. (25)

In this case the action of/l,] on the wavefunctiong (now spanning a finite-dimensional
Hilbert spaceH y of sequences) of the form
N-1

v =) Yu (26)
n=0

is given by iIV]y (1) = == 3, ¥nu((q2)" — (¢ z)") and is hence well defined o,
because;z; and g1z, are again lattice points. Correspondingly, only a finite number of
generators for the generalized coordinates arise, so that only finite sums appear in (21).
In this discrete setting, the parametgrin £Y?” ands in K, have the following
interpretation:£y"” contains—dependent gh—differences between different points £¥,
e.g. between next nearest neighboursfee 2 or even further points, i.e. it measures how
coarse grained the discretization is. Similaslis a measure for how coarse grained the jumps
initiated by the shift-operatork; are.
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4. g-deformation of the dynamics

It is apparent from the construction in the undeformed case that an appropriately generalized
version of the first Ehrenfest relation is the main building block for the derivation of a dynamics.
In order to adapt (8) to the situation of the Hopf algebra quantum Borel kinematics, we need a
symmetrization procedure on the expectation values in the first Ehrenfest relation. In particular,
if (,) denotes the usual scalar product as in [2] &rtténotes a shift operator, we need to use
expressions of the form

(W, SP)sym = 2{(W, SP) + (Syr, p)}. (27)

It means taking the usual scalar product in a first step and then symmetrizing the dependence
on the shift operata$. This procedure is necessary because of the occurrence of the operators
K; in the position operators in (21) in order to guarantee that the deformed counterpart to
the quantum mechanical probability density= v is a real quantity. Equivalently, the
symmetrized coordinates (24) can be used instead of the coordinates in (21) to obtain the same
effect.

In the symmetrized version, the first Ehrenfest relation reads:

(Y (t,2), Qu (N, D)sym = (¥, 2), PJ(Xgrad,If)lﬁ(t, 2))sym (28)

where
P} (Xgraq s) = Z'an <£</0> +|[[ ]] DT) (29)

asin [12]. Itis such that it reproduces (8) in the limpit> 1.
We start by calculating the left- and right-hand side of (28) separately. The left-hand side
yields:

(Y (t,2), Qu (Y, 2))sym = (Y (2, 2), FKY (2, 2))sym
= 93 ((¥, f(K$) + (Ke¥h), f9))
= (f, 93U (Ko¥) + (K9 )
= (f, A) (30)
where the real-valued functionsdo not depend on(compare with the undeformed case in
section 2.2) and are hence unaffected by the opefatorhe last line in (30) contains the
usual scalar product. Tlieanalogue of the quantum mechanical probability density vy
is hence given a%(w(sz) + (K,y¥)yr). Since the shift-operatork; are real, it is a real
quantity.
Correspondingly, the right-hand side of (28) leads to an expression of theg fomn) in
the usual scalar product witht

i N. e
_511N+£2] > iN -V e1jN+epj %
BEE {([’ N [ ] ) “ V- (“ : [J 2 ] ‘/’) @ 2
SNz = NZ —&1iN. . o - Nz ~NZ e iN. T
—([jN1g¥ Z ) ([17} g N 1ﬁ> +([jN]g™ 7 ) ([] ?i| q ”N‘W>

N. N.
([]N,] |:] 5 i| €2 - v w) (q*SIIN .(//) ([]N] |: > i| &2j % w) (qglJN w)

t The change of¥.] into % ande into je with respect to the expression in [2] are rooted in the corresponding
changes in (20). Itis the convention used in [12].
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- N. N
— ([JN1¥) ([]—} g Nl T 1/,) +([ N.]¥) ([ > ]qeuN +epj w)}

= ]ZD([JN] V) (31)

whereq®: acts as a shift-operator on functiofig), i.e.

gV f(2) = f(q“2). (32)

We restrict ourselves to the casefot= 0 to keep the argument clear. Furthermore, the
0-dependence is not essential for the derivation of the nonlinear parts, so that it is not crucial
for the main result, which is the derivation of possible real parts.

In terms ofy, andyr,, wherey = 1 + iy, one finds for theD-independent part:

* (UNZ] [1%} w) ((q°IN: + g1V go2d F )
AL ([ | @ )
+([jN1g2 ) ([1&} (g™ +q51jN;)w2>
( []N][’_} i ) g + g7V yy)
([JN ] [ } 2)'¥ wz) (@™ +q Ny
H—[NJW2) ([j%] (N 4 gty g 1//1)
+ (NI ([JN?} (Y- 4 gy gt w)} | -

Fulfilling the generalized Ehrenfest relation (28) means equating the expressiaofis for
andB. This restricts possible evolution equations foand like this contains information on
i9,. To extract this information, a general ansatz for such an evolution equation has to be
made. We use an ansatz WM;{ linear inyr andG’[l// ¥] nonlinear inyr, v:

iall/fl/_/ = (H(,’_l/{)_(Sl/f) + (Gé_[w,_W]W)leg)
=iy = (HJY)(SY) + (G [¥, v]¥) (RY).
S andR are shift operators like in (32), which typically occur ip-aleformed theory. Equations
(34) reduces to (10) in the limif — 1, if H; andG}[v, ] are such that they giv&/ and
G[y, ¥]in this limit.
With (34) we get
A = (KA W) + @) (Kih) + @) (Ks) + 3, K ) ()
= i{(H] K (Sy) + (G K ) (RY) — (H] K ) (SY) — (G K¥) (RY)
+(HJU)(SK¥) + (GJ¥) (RK W) — (HJY)(SK ) — (GLY) (RK ).
(35)

(34)
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Now assuming that the linear operaf@;", is denoted by, and the corresponding shift
S are real and expressing the identity againyia:= 1 +i, in terms ofy; andyr,, we obtain
that the terms on the right-hand side of (35) involving the linear tetinase given by:

(Hy2)(SKsy1) + (HKy2) (SY1) — (HY1)(SKsy2) — (H K1) (Sv2). (36)
Equating this expression with the linear terms in (33), we find

1 NZ &1N, —&1N; ejk
HZW[jNZ] I:J?il S:%(q«lNA+q 1N‘) K, =g 7, (37)

In particular, sinc&k; = ¢*"-, the parameter is fixed in dependence on The formalism to
derive ag-Schibdinger equation corresponding to the ansatz (34) hence requires the selection
s = 2. Reinserting this into the Hopf algebra quantum Borel kinematics means that the
freedom in the position and momentum operator is not independent and linked precisely by
this condition ory via the dynamics.

The resulting linear part of the-Schibdinger equation hence ig € 2N, g1, g2 = +1):

. _ N, o 1 e, TN
(Hy)(SY) = (UNZ] [17} [/] 2¢)§(q et gy (38)

It leads for allj in the limitg — 1 to the Hamiltonian—%d"T;2 obtained in section 2.2.
Furthermore, it resembles the Hamiltonian obtained with the more restricted deformation up

to a factorg®2/ NT which now is compensated by the operakgr
Up to now, the nonlinear terms;;, have been neglected. In order to derive them, the

terms in (35), which contain a dependence@jﬂ[l/_/, Y] := G1 +1iG,, are collected. The
imaginary terms cancel as expected and one obtains with the nofationR; + iR, ¥ the
following real quantity:

G1hi1(Yr1, Y2, R, Ry, Ky) + Goho(Yra, Y2, R1, R, Ky) (39)
where
hi(¥1, ¥2, Ry, Ro, Kg) = (K1) (Ravr1) + (K y2) (Royr2)

(K ¥2) (R1yrn) — (K1) (Ruyr2) + (Y1) (R2 K1) + (¥2) (R2 K ypr2)
+(Yr2) (R1K Y1) — (YD) (R1Kvr2) (40)

and

ha(Y1, Y2, R1, Ra, K) = (K1) (R1yn) + (K ¥2) (Rayr2)
(K1) (Roy2) — (Ks¥2) (Rayn) + (V) (RuK 1) + (Y2) (RuK92)
+(Y1) (R2K¥2) — (Y2) (R2K591). (41)
It now has to be equated with the nonlinear terms in (33). The corresponding identity

implicitly containsGi, G», R; andR,. Depending on the shift8; andR,, G1 andG, can be
obtained from it and yield the nonlinear terms via

Fyr = (GJ[¥, ¥]¥)(RY) = (G1+iG2) ) (Ry+ iRV (42)
In particular, the nonlineay-Schibdinger equation is then given asd2N, ¢;, g2 = +1):
i@ Y)Y = (H]Y)(S¥) + FyL (43)

with H] ands as in (38).
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Itis important to stress that the nonlinear teFigy, depends on the choices Bf andR5,
and indeed, for different choices &f andR; different types of nonlinear terms are obtained.
Thelimitg — 1 of the linear part of the evolution equation (38) has already been discussed
above. In order to obtain the nonlinear part in the lignit> 1, it is necessary to expand the
functionshy (Y1, ¥2, R1, Ry, Ky) andhy (Y1, ¥2, R1, Ro, K;) as well as the nonlinear terms in
(33) in leading orders of, where# is given asg = €". For the nonlinear terms in (33) one
findsA® + A®@ with

2
A(l) — %(&/wm _ wlll_fw)l’lz + O(h3) (44)
A? = —Dp" +O(h).

For hi(Y1, ¥2, R1, Ro, K;) one derives with the notatioR = Ry + iRy = (aqg*™ +
bgPNo) +i(cqg”™N: +dg®™:) (a, b, c,d, a, B, y ands are real constants) the expression

h1(Y1, Y2, R1, R, K) = 2(c +d)(Y§ + ¥5) + 2h <(C +d)82£ tcy +d5)

X (Y1) + Yavrp) + (aa + bB) (Vayry — Y1yrh) + O(h?) (45)

and a similar expression fok,(y1, VY2, R1, Ro, K;) which follows from (45) using
ho(Y1, ¥2, R1, Ro, Ky) = h1(¥r1, Y2, R2, Ry, Ky).

An implementation of these expansions shows that in the dimit 1, one always obtains
the same imaginary part for the nonlinear functional, which has also been derived without
g-deformation. In addition, a particular class of real parts occurs:

D,O//

20
It is equal to the imaginary part obtained in the limit— 1 or without deformation in the
framework of Borel quantization. FQR = 1 (trivial shift operator) the real part remains
undetermined like before, as expected for consistency.

Itis interesting to remark that the deformation in the earlier reference has led to different
classes of real parts. The reason for this discrepancy lies in the fact that here one has obtained
nonlinear terms in leading ordersiof in (44), whereas the counterpart to this formula in [12]
(formula (7.48)) is given in leading orders bf which have cancelled each other here due to
the contributions from the symmetrization.

In this way, the formalism presented here contains more information and leads to more
specific results. It is interesting to note that the real part derived here lies in the DG-class of
real parts introduced in section 2. In contrast to this, there are two nontrivial classes of real
parts for the more restricted deformation, one of which coincides with the class derived here,
and another one, which does not fall into the DG-classes. The deformation procedure used
here hence has picked from these possibilities precisely this class, which is a member of the
DG-classes.

Finally, the set ofg-Schibdinger equations (43) is indicated directly as a difference
equation in dependence ¢f

(46)

i, yNy ) = m

3j J J 3j (47)
(4 3) v (=2) =¥ (+3) v (-3))
WA+ +PU— )+ Fye.
It displays a more symmetric structure than the previous result.
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5. Summary

A method introduced in an earlier paper for the derivation of a discrete quantum mechanics
on St has been extended in such a way, that the quantum kinematics is now given in terms of
generators of an augmented algebra. This change in the kinematical structure has led, together
with an appropriate generalization of the first Ehrenfest theorem, to agrBehibdinger
equation. In particular, in the limes— 1, a specific type of real part for the nonlinearity in

the Schédinger equation could be derived for the first time, whereas no information is obtained

in the framework of Borel quantization withogtdeformation, or only restricted information

with the previous deformation. In particular, a unigue class of real parts has been specified, and
it is interesting that a member of the DG-class of real parts has been selected. The formalism
presented here has hence led to a particular type of nonlinear dynamics on the quantum level.
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